Ressources de WIMS en relation avec les programmes

Niveau math.3
(en cours de réalisation)

Tableau indicatif, sans garantie de conformité au programme officiel
(dernière mise à jour : 2009-12-01)

Dernière mise à jour des exercices WIMS : 2009-12-13
Remarques : Les points du programme qui ne sont pas exigibles pour le socle sont écrits en italiques.
Les capacités exigibles pour le socle et pour ce niveau sont écrites en gras.
Celles qui seront exigibles dans une année ultérieure sont écrites ni en italiques, ni en gras.

Organisation et gestion de données, fonctions

Sommaire

Objectifs

La résolution de problèmes a pour objectifs
- de synthétiser le travail conduit sur la proportionnalité dans les classes antérieures, d'approcher la notion de fonction et d'acquérir une première
connaissance des fonctions linéaires et affines,
- de poursuivre la mise en place de paramètres de position et de dispersion d'une série statistique,
- d'initier à la notion de probabilité par l'étude d'exemples simples.

1.1. Notion de fonction

1.1. Notion de fonction
Connaissances Capacités Commentaires
Image, antécédent, notations f (x), x -> f (x).
[Thèmes de convergence]
- Déterminer l'image d'un nombre par une fonction déterminée par une courbe, un tableau de données ou une formule.
- Déterminer un antécédent par lecture directe dans un tableau ou sur une représentation graphique.
Toute définition générale de la notion de fonction et la notion d'ensemble de définition sont hors programme.
La détermination d'un antécédent à partir de l'expression algébrique d'une fonction n'est exigible que dans le cas des fonctions linéaires ou affines.
  • Comparaison et tableau des variations
  • Construction du tableau des variations
  • Résolution graphique 1: f(x)=k
  • Résolution graphique 2: f(x)=k
  • Extremum et représentation graphique
  • Extremum et tableau des variations
  • Résolution graphique 3: f(x)>g(x)
  • Résolution graphique 2: f(x)>g(x)
  • Résolution graphique 1: f(x)>g(x)
  • Résolution graphique f(x)>k
  • Lecture graphique d'antécédent 2
  • Lecture graphique d'antécédent
  • Lecture graphique d'image 2
  • Lecture graphique d'image
  • Lecture d'antécédents par tableau de valeurs
  • Lecture d'image par tableau de valeurs
  • Antécédent par tableau des variations
  • Image par tableau des variations
  • Lecture graphique du sens de variation
  • Sens et tableau des variations

1.2 Fonction linéaire, fonction affine

1.2 Fonction linéaire, fonction affine
Connaissances Capacités Commentaires
Proportionnalité. En classe de Troisième, il s'agit de compléter l'étude de la proportionnalité par une synthèse d'un apprentissage commencé à l'école primaire.
  • vitesse1
  • distance1
  • durée1
  • echelcarte1
  • echelle1
  • echelreelle1
Fonction linéaire.
Coefficient directeur de la droite représentant une fonction linéaire.
- Déterminer par le calcul l'image d'un nombre donné et l'antécédent d'un nombre donné.
- Déterminer l'expression algébrique d'une fonction linéaire à partir de la donnée d'un nombre non nul et de son image.
- Représenter graphiquement une fonction linéaire.
- Connaître et utiliser la relation y = ax entre les coordonnées (x,y) d'un point M qui est caractéristique de son appartenance à la droite représentative de la fonction linéaire x -> ax.
- Lire et interpréter graphiquement le coefficient d'une fonction linéaire représentée par une droite.
L'utilisation de tableaux de proportionnalité permet de mettre en place le fait que le processus de correspondance est décrit par une formulation du type « je multiplie par a ». Cette formulation est reliée à x -> ax.
Pour des pourcentages d'augmentation ou de diminution, le fait que, par exemple, augmenter de 5 % c'est multiplier par 1,05 et diminuer de 5 % c'est multiplier par 0,95 est établi.
Certains traitements des situations de proportionnalité utilisés dans les classes précédentes sont reliés aux propriétés d'additivité et d'homogénéité de la fonction linéaire.
  • Fonctions linéaires et révisions.
  • Pourcentage
  • Pourcentage II
  • fonction linéaire 1
  • Fonction linéaire 2
  • image-antécédent d'une fonction
  • Problème de proportionnalité 1
  • Problème de proportionnalité 2
  • Classer des fonctions (4 fonctions).
  • Calculer un antécédent
  • Calculer une image
  • Tableau (entiers naturels)
  • Tableau (entiers relatifs)
  • Tableau (rationnels)
  • Tableau (mélangés)
  • Image et antécédent, application affine
  • Fonction affine ou linéaire ?
  • Fonctions linéaire et affine
  • Droite et cadran
  • Droite animée
  • Equation de droite affine parallèle
  • Déterminer graphiquement une équation de droite (niveau 1)
  • Fonction linéaire 1
  • Itinéraire dans le plan
Fonction affine.
Coefficient directeur et ordonnée à l'origine d'une droite représentant une fonction affine.
[Thèmes de convergence]
- Déterminer par le calcul l'image d'un nombre donné et l'antécédent d'un nombre donné.
- Connaître et utiliser la relation y = ax + b entre les coordonnées (x,y) d'un point M qui est caractéristique de son appartenance à la droite représentative de la fonction linéaire x -> ax + b.
- Déterminer une fonction affine à partir de la donnée de deux nombres et de leurs images.
- Représenter graphiquement une fonction affine.
- Lire et interpréter graphiquement les coefficients d'une fonction affine représentée par une droite.
- Déterminer la fonction affine associée à une droite donnée dans un repère.
Parmi les situations qui ne relèvent pas de la proportionnalité, certaines sont cependant modélisables par une fonction dont la représentation graphique est une droite. Cette remarque peut constituer un point de départ à l'étude des fonctions affines. Pour les fonctions affines, la proportionnalité des accroissements de x et y est mise en évidence.
  • Fonctions linéaires/affines et droites
  • Graphique -> fonction
  • Graphique -> image
  • Correspondance fonction-représentation 4
  • Correspondance équation-droite 4
  • Antécédent par une fonction
  • Classer des fonctions (4 fonctions).
  • Classer des fonctions (6 fonctions).
  • Correspondance équation-droite 3
  • Correspondance équation-droite 5
  • Correspondance fonction-représentation 3
  • Correspondance fonction-représentation 5
  • fonction linéaire 1
  • Fonction linéaire 2
  • Image par une fonction
  • image-antécédent d'une fonction
  • Problème de proportionnalité 1
  • Problème de proportionnalité 2
  • Image et antécédent, application affine
  • Fonctions linéaire et affine
  • Fonction linéaire 1
  • Droite et cadran
  • Droite animée
  • Equation de droite affine parallèle
  • Déterminer graphiquement une équation de droite (niveau 1)
  • Classer des fonctions B (6 fonctions)
  • Fonction affine ?
  • Trouver la formule (guidé 1)
  • Trouver la formule (guidé 2)
  • Trouver la formule.
  • Classer des fonctions A (6 fonctions)
  • Classer des fonctions A (9 fonctions)
  • Classer des fonctions B (9 fonctions)
  • Correspondance équation-droite 3
  • Correspondance équation-droite 4
  • Correspondance équation-droite 5
  • Correspondance fonction-représentation 3
  • Correspondance fonction-représentation 4
  • Correspondance fonction-représentation 5
  • Quelle est la fonction ?
  • Graphique -> antécédent
  • Graphique -> image
  • Quelle est l'équation ?
  • Quelle est la fonction ?
  • Pyramide et fonction linéaire 1
  • Pyramide et fonction linéaire 2

1.3. Statistique

1.3. Statistique
Connaissances Capacités Commentaires
Caractéristiques de position.
Approche de caractéristiques de dispersion.
[Thèmes de convergence]
- Une série statistique étant donnée (sous forme de liste ou de tableau ou par une représentation graphique) :
- déterminer une valeur médiane de cette série et en donner la signification ;
- déterminer des valeurs pour les premier et troisième quartiles et en donner la signification ;
- déterminer son étendue.

- Exprimer et exploiter les résultats de mesures d'une grandeur.
Le travail est conduit aussi souvent que possible en liaison avec les autres disciplines dans des situations où les données sont exploitables par les élèves. L'utilisation d'un tableur permet d'avoir accès à des situations plus riches que celles qui peuvent être traitées « à la main ». La notion de dispersion est à relier, sur des exemples, au problème posé par la disparité des mesures d'une grandeur, lors d'une activité expérimentale, en particulier en physique et chimie.
  • OEF Statistiques 0
  • Statistiques
  • Médiane
  • Moyenne
  • Moyennes et coefficients
  • Effectifs et pourcentages
  • Moyenne statistique
  • Moyenne pondérée
  • Angle et pourcentages
  • Diagramme circulaire et pourcentages
  • Statistique et pourcentages
  • Répartition et fréquences
  • Répartition et regroupement
  • Séries statistiques : taille
  • Diagramme en bâtons et notes

1.4. Notion de probabilité

1.4. Notion de probabilité
Connaissances Capacités Commentaires
[Thèmes de convergence] - Comprendre et utiliser des notions élémentaires de probabilité.
- Calculer des probabilités dans des contextes familiers.
La notion de probabilité est abordée à partir d'expérimentations qui permettent d'observer les fréquences des issues dans des situations familières (pièces de monnaie, dés, roues de loteries, urnes, etc.).
La notion de probabilité est utilisée pour modéliser des situations simples de la vie courante. Les situations étudiées concernent les expériences aléatoires à une ou à deux épreuves.
  • Carte 1
  • Carte 2
  • Carte 3
  • et ou 1
  • Roue 1 en Francs Pacifique
  • Roue 2 en Francs Pacifique
  • Roue 1 en €
  • Roue 2 en €
  • Urne 1
  • Urne 2
  • Urne 3
  • Urne double 1
  • Urne double 2
  • Vrai ou faux Urne

Nombres et Calculs

Sommaire

Objectifs

La résolution de problèmes a pour objectifs
- d'entretenir le calcul mental, le calcul à la main et de l'usage raisonnée des calculatrices,
- d'assurer la maîtrise des calculs sur les nombres rationnels,
- d'amorcer les calculs sur les radicaux et de poursuivre les calculs sur les puissances,
- de familiariser les élèves aux raisonnements arithmétiques,
- de compléter les bases du calcul littéral et d'en conforter le sens, notamment par le recours à des équations ou des inéquations du premier degré pour résoudre des problèmes,
- de savoir choisir l'écriture appropriée d'un nombre ou d'une expression littérale suivant la situation.

2.1. Nombres entiers et rationnels

2.1. Nombres entiers et rationnels
Connaissances Capacités Commentaires
Diviseurs communs à deux entiers, PGCD. - Connaître et utiliser un algorithme donnant le PGCD de deux entiers (algorithme des soustractions, algorithme d'Euclide).
- Calculer le PGCD de deux entiers.
- Déterminer si deux entiers donnés sont premiers entre eux.
Plusieurs méthodes peuvent être envisagées.
La connaissance de relations arithmétiques entre nombres - que la pratique du calcul mental a permis de développer - permet d'identifier des diviseurs communs de deux entiers.
Le recours à une décomposition en produits de facteurs premiers est possible dans des cas simples mais ne doit pas être systématisée.
Les tableurs, calculatrices et logiciels de calcul formel sont exploités.
  • Réduction fractions
  • Calcul avec des fractions 1
  • Calcul avec des fractions 2
  • Critères de divisibilité 1
  • Critères de divisibilité 2
  • Liste de diviseurs
  • Paquets de crayons
  • Entrepôt 2
  • Coffre 1
  • Parc rectangulaire
  • Quizz nombres 1
  • Calcul du pgcd par un algorithme
calcul du pgcd par l'algorithme d'Euclide.
  • Liste de diviseurs communs
  • Liste de diviseurs 1a
  • Liste de diviseurs 1b
  • Liste de diviseurs 2a
  • Liste de diviseurs 2b
  • Liste de diviseurs 3a
  • Liste de diviseurs 3b
  • Liste de diviseurs
  • PGCD Méthode par divisions
  • PGCD Méthode par soustractions
  • Calcul avec des fractions 1
  • Calcul avec des fractions 2
  • Critères de divisibilité 1
  • Critères de divisibilité 2
  • Décomposer
  • Trouver un diviseur
  • Liste de diviseurs communs
  • Liste de diviseurs
  • Trouver un multiple
  • Paquets de crayons
  • Entrepôt 2
  • Coffre 1
  • Parc rectangulaire
  • Quizz nombres 2
  • Quizz nombres 1
  • Réduction fractions
  • Vocabulaire multiplication
  • Vocabulaire puissance
  • Calcul du pgcd par un algorithme
Fractions irréductibles. - Simplifier une fraction donnée pour la rendre irréductible. Dans le cadre du socle commun, les élèves utilisent leur calculatrice pour rendre irréductible une fraction donnée.
Opérations sur les nombres relatifs en écriture fractionnaire.
[Reprise du programme du cycle central]
Dans le cadre du socle commun, l'addition, la soustraction et la multiplication « à la main » de deux nombres relatifs en écriture fractionnaire, sont exigibles seulement dans des cas simples ; pour l'addition et la soustraction, il s'agit uniquement des cas où un calcul mental est possible.
Dans les autres cas, la calculatrice est utilisée.

2.2. Calculs élémentaires sur les radicaux

2.2. Calculs élémentaires sur les radicaux
Connaissances Capacités Commentaires
Racine carrée d'un nombre positif. - Savoir que, si a désigne un nombre positif, sqrt(a) est le nombre positif dont le carré est a et utiliser les égalités : (sqrt(a))2 = a, sqrt(a2) = a.
Déterminer, sur des exemples numériques, les nombres x tels que x2 = a, où a désigne un nombre positif. = a.
Produit et quotient de deux radicaux. -Sur des exemples numériques, où a et b sont deux nombres positifs, utiliser les égalités :
sqrt(ab) = sqrt(a)sqrt(b), sqrt(a/b) = sqrt(a)/sqrt(b) (b non nul)
Ces résultats permettent de transformer l'écriture d'un nombre et de choisir la forme la mieux adaptée à la résolution d'un problème posé.
  • Valeur approchée d'une racine carrée.
  • Valeurs approchées et racines carrées.
  • Correspondance de racines carrées 3.
  • Correspondance de racines carrées 4.
  • Correspondance de racines carrées 5.
  • Tableau de décimaux.
  • Développer/réduire 2.
  • Développer/réduire 1.
  • Ecriture réduite N1.
  • Tableau d'entiers.
  • Racines et nombres 3.
  • Racines et nombres 4.
  • Racines et nombres 5.
  • Tableau de puissances de 10.
  • Tableau de puissances quelconques.
  • Tableau de fractions.
  • Rectangle et racine carrée
  • Ecriture réduite d'une somme 2.
  • Ecriture réduite d'une somme 3.
  • Ecriture réduite d'une somme 4.
  • Calculer un quotient.
  • Calculer un produit.

2.3. Écritures littérales

2.3. Écritures littérales
Connaissances Capacités Commentaires
Puissances.
[Thèmes de convergence]
-Utiliser sur des exemples les égalités :
am . an = am+n ;
am / an = am-n ;
(am)n = amn;
(ab)n = anbn ;
(a/b)n=an/bn;
où a et b sont des nombres non nuls et m et n des entiers relatifs.
Comme en classe de Quatrième, ces résultats sont construits et retrouvés, si besoin est, en s'appuyant sur la signification de la notation puissance qui reste l'objectif prioritaire. La mémorisation de ces égalités est favorisée par l'entraînement à leur utilisation en calcul mental.
Factorisation. - Factoriser des expressions algébriques dans lesquelles le facteur est apparent. Les travaux se développent dans trois directions :
- utilisation d'expressions littérales donnant lieu à des calculs numériques ;
- utilisation du calcul littéral pour la mise en équation et la résolution de problèmes ;
- utilisation pour prouver un résultat général (en particulier en arithmétique).
Les activités visent la maîtrise du développement ou de la factorisation d'expressions simples.
Identités remarquables. Connaître les identités :
(a + b)(a - b) = a2 - b2
(a + b)2 = a2 + 2ab + b2
(a - b)2 = a2 - 2ab + b2

- Les utiliser dans les deux sens sur des exemples numériques ou littéraux simples.
Dans le cadre du socle commun, les élèves connaissent l'existence des identités remarquables et doivent savoir les utiliser pour calculer une expression numérique mais aucune mémorisation des formules n'est exigée.
  • Développer k(a+b)#
  • Développer (a+b)(c+d)#
  • Développer (a+b)^2 #
  • Développer (a-b)^2 #
  • Développer (a-b)(a+b)#
  • Factoriser
  • Factoriser a^2+2ab+b^2
  • Factoriser a^2-b^2
  • Factoriser ka+kb 1
  • Factoriser ka+kb 2
  • Calcul littéral et aires
  • Utiliser la lettre x pour calculer
Erreurs d'utilisation du signe égal, relier des expressions avec des phrases :
  • Initiation à l'algèbre au collège
Travail sur tableur :
  • OEF Initiation au tableur.
  • I Quel est le nombre écrit dans la cellule...
  • I Clique sur la cellule...
  • II Quelle est la formule ? (réf. rel.)
  • I Quelle est la formule ?
  • I Sélectionner la plage [Java].
  • I Quels sont les nombres de la plage...

2.4. Équations et inéquations du premier degré

2.4. Équations et inéquations du premier degré
Connaissances Capacités Commentaires
Problèmes du premier degré : inéquation du premier degré à une inconnue, système de deux équations à deux inconnues. - Mettre en équation un problème.
- Résoudre une inéquation du premier degré à une inconnue à coefficients numériques ; représenter ses solutions sur une droite graduée.
- Résoudre algébriquement un système de deux équations du premier degré à deux inconnues admettant une solution et une seule ; en donner une interprétation graphique.
La notion d'équation ne fait pas partie du socle commun. Néanmoins, les élèves peuvent être amenés à résoudre des problèmes du premier degré (méthode arithmétique, méthode par essais successifs, ...).
  • Correspondance inéquations 5
  • Deductio Inégalité 0
  • Zone d'inégalité
  • Equations-Inéquations
  • Rectangle
  • Restaurant
  • Système 2x2
  • Système 2x2
  • Système 2x2 (solutions entières)
  • Solution d'un système d'équations
  • Equation produit 1
  • x^2-b^2=0
  • x^2-b=0
  • Résolution équation produit
  • Solution(s) d'équations
  • Résoudre un système d'équations
  • Solution d'un système d'équations
  • Problème et système d'équations 2
  • Problème et système d'équations 1
  • Bar
  • Cinéma
  • Chez le fleuriste
  • Gascogne
  • Train
Problèmes se ramenant au premier degré : équations produits. - Résoudre une équation mise sous la forme A(x).B(x) = 0, où A(x) et B(x) sont deux expressions du premier degré de la même variable x. L'étude du signe d'un produit ou d'un quotient de deux expressions du premier degré de la même variable est hors programme.

Géométrie

Sommaire

Objectifs

La résolution de problèmes a pour objectifs
- de connaître les objets usuels du plan et de l'espace, de calculer les grandeurs attachées à ces objets,
- de développer les capacités heuristiques, les capacités de raisonnement et les capacités relatives à la formalisation d'une démonstration ;
- d'entretenir la pratique des constructions géométriques (aux instruments et à l'aide d'un logiciel de géométrie dynamique) et des raisonnements sous-jacents qu'elles mobilisent ;
- de solliciter dans les raisonnements les propriétés géométriques et les relations métriques associées vues dans les classes antérieures ;
- de familiariser les élèves aux sections de solides de l'espace.

3.1 Figures planes

3.1 Figures planes
Connaissances Capacités Commentaires
Triangle rectangle, relations trigonométriques. - Connaître et utiliser les relations entre le cosinus, le sinus ou la tangente d'un angle aigu et les longueurs de deux des côtés d'un triangle rectangle.
- Déterminer, à l'aide de la calculatrice, des valeurs approchées :
- du sinus, du cosinus et de la tangente d'un angle aigu donné ;
- de l'angle aigu dont on connaît le cosinus, le sinus ou la tangente.
La définition du cosinus a été vue en classe de Quatrième. Le sinus et la tangente d'un angle aigu sont introduits comme rapports de longueurs.
Les formules suivantes sont à démontrer :
cos2  + sin2  = 1 et tan  = sin  / cos  .
La seule unité utilisée est le degré décimal.
  • Calculer la mesure d'un angle 2
  • Calculer la mesure d'un angle 1
  • Calculer la mesure d'un angle 3
  • Calculette et trigonométrie 3
  • Calculette et trigonométrie 2
  • Calculette et trigonométrie 1
  • Trigo (choix de la formule)
  • Deux triangles
  • Calculer une longueur 2
  • Calculer une longueur 1
  • Calculer une longueur 3
  • Vocabulaire 1
  • Vocabulaire 2
  • Vocabulaire 3
  • Échelle
  • Cosinus
  • Hauteur d'un arbre
  • Sinus
  • Tangente
Configuration de Thalès. - Connaître et utiliser la proportionnalité des longueurs pour les côtés des deux triangles déterminés par deux parallèles coupant deux droites sécantes.
- Connaître et utiliser un énoncé réciproque.
Il s'agit de prolonger l'étude commencée en classe de Quatrième qui, seule, est exigible dans le cadre du socle commun.
La réciproque est formulée en tenant compte de l'ordre relatif des points sur chaque droite mais, dans le cadre du socle commun, les élèves n'ont pas à distinguer formellement le théorème direct et sa réciproque.
L'utilisation d'un logiciel de construction géométrique permet de créer des situations d'approche ou d'étude du théorème et de sa réciproque.
  • Noeud papillon
  • Noeud papillon II
  • Thalès et cercle circonscrit
  • Thalès et triangle isocèle
  • Triangle et droites parallèles
  • Longueur papillon 2
  • Longueur papillon
  • Parallèles (papillon)
  • Parallèles (papillon) 2
  • Parallèles (triangle)
  • Parallèles (triangle) 2
  • Droites parallèles
  • Rapports Thalès général
  • Rapports Thalès triangle
  • Rapports Thalès 2 triangles emboités
  • Rapports Thalès 2 triangles non emboités
  • Longueur triangle 2
  • Longueur triangle
Agrandissement et réduction. [Reprise du programme de 4e] - Agrandir ou réduire une figure en utilisant la conservation des angles et la proportionnalité entre les longueurs de la figure initiale et celles de la figure à obtenir. Dans le cadre du socle commun, il est attendu des élèves qu'ils sachent, dans des situations d'agrandissement ou de réduction, retrouver des éléments (longueurs ou angles) de l'une des deux figures connaissant l'autre.
En ce qui concerne les longueurs, ce travail se fait en relation avec la proportionnalité.
Angle inscrit, angle au centre. - Connaître et utiliser la relation entre un angle inscrit et l'angle au centre qui intercepte le même arc. Cette comparaison entre angle inscrit et angle au centre permet celle de deux angles inscrits sur un même cercle interceptant le même arc.
Polygones réguliers. - Construire un triangle équilatéral, un carré, un hexagone régulier, un octogone connaissant son centre et un sommet.

3.2 Configurations dans l'espace

3.2 Configurations dans l'espace
Connaissances Capacités Commentaires
Problèmes de sections planes de solides. - Connaître et utiliser la nature des sections du cube, du parallélépipède rectangle par un plan parallèle à une face, à une arête.
- Connaître et utiliser la nature des sections du cylindre de révolution par un plan parallèle ou perpendiculaire à son axe.

- Connaître et utiliser les sections d'un cône de révolution et d'une pyramide par un plan parallèle à la base.
L'utilisation de logiciels de géométrie dans l'espace permet de conjecturer ou d'illustrer la nature des sections planes.
C'est aussi l'occasion de faire des calculs de longueur et d'utiliser les propriétés rencontrées dans d'autres rubriques ou les années antérieures. Les élèves sont également confrontés au problème de représentation d'objets à 3 dimensions, ainsi qu'à celle de la représentation en vraie grandeur d'une partie de ces objets dans un plan (par exemple : section plane, polygone déterminé par des points de l'objet...).
  • Quizz sections planes
  • Section d'un cône
  • Section d'un cube 1
  • Section d'un cube 2
  • Section d'un parallélépipède rectangle 1
  • Section d'un parallélépipède rectangle 2
  • Meuble de forme pyramidale 2
  • Pyramide et fonction linéaire 2
  • Pyramide et fonction linéaire 1
  • Meuble de forme pyramidale
Sphère, centre, rayon. Les grands cercles de la sphère et les couples de points diamétralement opposés sont mis en évidence.
Sections planes d'une sphère. [Thèmes de convergence] - Connaître la nature de la section d'une sphère par un plan.
- Calculer le rayon du cercle intersection connaissant le rayon de la sphère et la distance du plan au centre de la sphère.
Le fait que le centre du cercle d'intersection est l'intersection du plan et de la perpendiculaire menée du centre de la sphère à ce plan est admis.
Le cas particulier où le plan est tangent à la sphère est également étudié.
  • Section d'une sphère (rayon section)
  • Section d'une sphère (rayon sphère)
  • Section d'une sphère (section-centre)
- Représenter la sphère et certains de ses grands cercles. Aucune difficulté n'est soulevée sur ces représentations. Le rapprochement est fait avec les connaissances que les élèves ont déjà de la sphère terrestre, notamment pour le repérage sur la sphère à l'aide des méridiens et des parallèles.

Grandeurs et mesures

Sommaire

Objectifs

La résolution de problèmes a pour objectifs
- d'entretenir et de compléter les connaissances et les raisonnements relatifs aux calculs d'aires et volumes,
- d'étudier des situations dans lesquelles interviennent des grandeurs composées (produit ou quotient), notamment du point de vue des changements d'unités.

4.1 Aires et volumes

4.1 Aires et volumes
Connaissances Capacités Commentaires
Calculs d'aires et volumes. - Calculer l'aire d'une sphère de rayon donné.
- Calculer le volume d'une boule de rayon donné.
Il s'agit aussi d'entretenir les acquis des années précédentes : aires des surfaces et volumes des solides étudiés dans ces classes.
  • Tableau de sphère et boule
  • Sphère et boule
  • Choisir la bonne formule 2
  • Choisir la bonne formule littérale
Effet d'une réduction ou d'un agrandissement. - Connaître et utiliser le fait que, dans un agrandissement ou une réduction de rapport k,
- l'aire d'une surface est multipliée par k2 ,
- le volume d'un solide est multiplié par k3.
Dans le cadre du socle commun, les surfaces dont les aires sont à connaître sont celles du carré, du rectangle, du triangle, du disque et les solides dont les volumes sont à connaître sont le cube, le parallélépipède rectangle, le cylindre droit et la sphère.
  • Agrandissement-Réduction (aire)
  • Agrandissement-Réduction (longueur)
  • Agrandissement-Réduction (volume)

4.2 Grandeurs composées, changement d'unités

4.2 Grandeurs composées, changement d'unités
Connaissances Capacités Commentaires
Vitesse moyenne.
[Thèmes de convergence]
- Effectuer des changements d'unités sur des grandeurs produits ou des grandeurs quotients. Plusieurs grandeurs produits et grandeurs dérivées peuvent être utilisées : passagers X kilomètres, kWh, euros/kWh, m3/s ou m3. s-1,...
Les changements d'unités s'appuient, comme dans les classes antérieures, sur des raisonnements directs et non pas sur des formules de transformation.
Dans le cadre du socle commun la capacité ne porte que sur des situations de la vie courante, sur des unités et des nombres familiers aux élèves.
  • Conversion décimal vers horaire 1
  • Conversion décimal vers horaire 2
  • Conversion décimal vers horaire 3
  • Conversion horaire vers décimal 1
  • Conversion horaire vers décimal 2
  • Conversion horaire vers décimal 3
  • Conversion vitesse 2
  • Conversion vitesse 1
  • Conversion vitesse 3
  • Course à pieds (lecture chronomètre)
  • Course à pieds

This page is not in its usual appearance because WIMS is unable to recognize your web browser.
In order to access WIMS services, you need a browser supporting forms. In order to test the browser you are using, please type the word wims here: and press ``Enter''.

Please take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.