A function $f$ is continuous on a point ${x}_{0}$ if

For all $\epsilon >0$, there exists a $\phantom{\rule{thickmathspace}{0ex}}\delta >0$,
such that $\mid x-{x}_{0}\mid <\delta $ implies $\mid f(x)-f({x}_{0})\mid <\epsilon $.

Given a concret function (who is continuous), a ${x}_{0}$
and a $\epsilon >0$, you have to find a $\delta >0$
which verifies the above condition. And you will be noted according to
this $\phantom{\rule{thickmathspace}{0ex}}\delta $: more it is close to the best possible value, better
will be your note.
Other exercises on:

The most recent versionPlease take note that WIMS pages are interactively generated; they are not ordinary HTML files. They must be used interactively ONLINE. It is useless for you to gather them through a robot program.

- Description: on the definition of continuity: given epsilon, find delta. serveur web interactif avec des cours en ligne, des exercices interactifs en sciences et langues pour l'enseigment primaire, secondaire et universitaire, des calculatrices et traceurs en ligne
- Keywords: math, interactif, exercice,qcm,cours,classe,biologie,chimie,langue,interactive mathematics, interactive math, server side interactivity,exercise,qcm,class, analysis, epsilon, delta, continuity, limit, calculus